

The universAAL Primer

Basic

1

Introduction
The EU-funded project universAAL aims to produce an open platform
that provides a standardized approach making it technically feasible and
economically viable to develop AAL solutions. More information is
available at http://universaal.org/.

This Basic Primer Book intends to give a brief and simple overview of the
universAAL Execution Platform. Only the core concepts of uAAL are
explained and these are accompanied by indicative diagrams and
schemes.

The targeted audience is anyone with some interest in the field of AAL,
as the text tries to remain as less technically-dependent as possible.
However some knowledge about ICT and programming is welcome, since
some concepts are used without being explained that are commonly
known to these domains.

Take into account that the content of this Primer does neither replace
nor take precedence under any circumstance over the official contents
developed in project universAAL, reported in the public deliverables
available in http://universaal.org/es/about/deliverables.

The current version of this Primer is compatible with the release 2.0 of
the universAAL Execution Platform. The software sources and binaries
are available through http://forge.universaal.org/gf/.

Contents

Middleware 2

Ontological Model 3

Context 4

Service 5

User Interaction 6

Applications and Managers 7

2

Middleware
The Middleware is the core part of uAAL platform and takes care that all
uAAL nodes in a Space can cooperate one with each other. It establishes
peer to peer communications between them so that they can share the
different kinds of uAAL semantic communication: Context, Service and
User Interaction, following the shared Ontological Model.

What the middleware is composed of

The Container is the part that lets the Middleware logic execute in
different environments. There are different Containers so that the
Middleware can run on devices with plain Java, computers or embedded
systems running OSGi, or in Android smartphones, so far.

The Peering part is responsible for interconnecting and communicating
the instances of the Middleware regardless of where they are running,
using technologies such as jSLP and jGroups.

The Communication part is the one holding the ultimate logic of the
Middleware that enables the flow of uAAL semantic information across
peers, by defining specific-purposes Buses. These Buses is what
applications connect to, and when they do so, they are in constant
contact no matter the Device, Container or Peering technology they are
running with. There is a bus for each type of communication (Context,
Service and User Interaction), handling its own specific strategy,
semantics, reasoning and match-making of participants. The Middleware delivers buses across multiple instances in different environments

3

Ontological Model
Knowledge is shared in uAAL in the form of Ontologies. It is its
information model. Ontologies are a way to represent real-life
information so it can be understood by computers. You can think of
Ontologies as a network of concepts linked by properties. One tricky
thing is that while we usually think in tree-view, Ontologies are meshes.

What ontologies are made of

Resources are how the concepts are represented. They are the nodes in
the mesh. They are identified by a URI. They can inherit from other
resources, and have properties that link to other resources or datatypes.

Properties are links between the concepts. They are also identified by
URIs and can also inherit from other properties. They can have
restrictions upon them, like cardinality.

Datatypes are the native data formats, like Boolean, Integer and so on.
They are always present by default and don´t have properties.

Enumerations are sets of instances of Resources, representing different
specific values that a property can point to.

Ontologies link resources through properties

4

Context
Context information represents the environment of the system, from
physical surrounding, including users, to system information. Context
communication is event-based, forwarding updates of the context. This is
done in the form of Context Events, which are sent by Context
Publishers, and can be consumed by Context Subscribers.

How context information is shared

Context Events are the minimal unit of context information sharing and
are built on the Ontological model of uAAL. The minimal context
information that can be extracted from an Ontological model is a link of
two concepts through a property, modelled as a triple with subject,
predicate and object. This is known as a statement. That is the structure
of a Context Event, along with metadata.

Context Publishers are applications that are capable of sending Context
Events. They build these events with the Ontological model and
broadcast them.

Context Subscribers are any application interested in consuming
Context Events. They define a filter to restrict which types of Events they
are exactly interested in.

Context Events are built on the ontological model

Context Events are forwarded through the bus to the appropriate subscribers

5

Service
Services are request/response interactions between applications. They
are semantic, which means that you don´t need to call a service like “turn
on a light by ID” (which you can) but you can ask to for services that “turn
on all lights in a given location”, without knowing them in advance. This is
possible because services are described with the Ontological model.

How services are provided and called

A Service Ontology is needed; it is the shared model between requester
and provider. It works as an anchor to the Ontological model. It also
allows restrictions over the original model to make services more specific.

Service Callees are those applications that provide services of certain
Service Ontology. They do so by registering Service Profiles.

Service Profiles are the equivalent to methods. They represent the
operation to perform. Starting at the Service Ontology they describe
arguments as a Path to a concept on which an Effect is expected.

Service Callers are the applications that request the execution of a
service. This is achieved by issuing Service Requests. The Requests are
matched to registered Profiles and if they are ontologically equivalent,
the Callee(s) that registered them will be called and will give an answer.

Service Requests are the counterpart of Service Profiles, built the same
way but declare what the Caller wants to execute.

Service Ontologies are defined over the ontological model

Service Request´s arguments must match registered profiles to be delivered to callee

6

User Interaction
Direct User Interaction is achieved by uAAL applications in a decoupled
fashion. They do not handle how this information is presented to the
user, only what is being presented (and handled in return). To do so the
interaction information is abstracted by representing it with an
Ontological model.

How the user interaction is handled

User Interaction Callers are the applications that want to have some
kind of direct interaction with the user. They build a Form that represents
exactly what they want to show to the user and what they want in return.

Forms are the ontological representation of the typical user interaction
components, like textual inputs, multiple selections, buttons, and so on.
Forms are created by UI Callers and sent to UI Handlers to be rendered,
filled by user, and sent back to UI Callers to be processed.

User Interaction Handlers are special types of applications in charge of
translating the Forms sent by UI Callers to a physical rendering that a
user can interact with, such as a GUI, a sound output or Web page. Then
interpret the user responses to fill in the information requested by UI
Callers into the Form and send it back. There can be several UI Handlers
in different locations, with different modalities, and the UI Callers are
oblivious to them, thus achieving multi-modal and multi-location
interaction.

Forms can be rendered in many places and modalities, depending on the handler

7

Applications and Managers
A uAAL Application is the software part of an AAL Service, and is
understood as a piece of software that communicates with others by
making use of the uAAL Execution Platform. A Manager is an Application
that is part of the platform itself and is necessary for its proper operation,
or provides relevant basic services or events for other applications.

What parts an application is made of

An application, in addition to its own business logic, and regardless of its
structure, needs one or more of the uAAL “wrappers” presented until
now: Context Publisher, Context Subscriber, Service Caller, Service Callee
and User Interaction Caller.

Each of this must be created at some point during the application
execution, at which they will be connected to uAAL. When the
application stops, these must be closed.

Because Ontologies are used as data model, the Application must make
use of an Ontology describing its information domain. An application can
define its own ontological model but it is strongly recommended that an
existing implementation is reused (if it exists), for interoperability
purposes.

Some Managers allow the creation of pseudo-Applications by scripting
workflows or rules.

An Application running in the container connects to the buses using its own wrappers

8

The universAAL Primer - Basic

